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T H E  P R O B L E M  O F  A C O N F I N E D  E X P L O S I O N  I N  A N  E L A S T I C  H A L F - S P A C E  

A. I. Shakhov  and  N. I. Shishkin  UDC 550.348.425.4 

The  problem of propagation in ground of seismic waves generated by an underground explosion is 
usually formulated as the  problem of propagation, in an elastic half-space, of waves generated by a localized 
source. This problem was examined in [1-3], where the motion of a free surface was studied. In this paper, we 
study displacements at internal points of the half-space and also residual displacements that  occur therewith. 
The investigation of the motion of internal points of the medium is necessary for the analysis of elastic waves 
recorded upon underground explosions when the recording instruments  are located inside the medium [4]. 
Buckling of the ground surface in an underground explosion is connected with residual displacements. 

1. We examine the motion that  occurs in an elastic half-space as a result of a confined explosion. The 
explosion occurs at depth  z = z0 under the free surface of the half-space related to the coordinate system 
OrOz with the direction of the axes shown in Fig. 1. The  center of the  explosion is at the point (r, z) = (0, z0). 
Figure 1 also shows the edges of the waves that  arise: the longitudinal wave P generated by the explosion, 
the longitudinal wave P P  reflected from the free surface, and the reflected transverse wave PS.  

The diverging spherical longitudinal wave generated by the explosion is described by the potential 
~o*(t, r, z) of the displacement field of a source that  is equivalent to the explosion: 

- - - R - - f  ~0 t - ~ p  , (1.1) 

where R = [r 2 + (z0 - z)2] 1/2, f ( x )  = 1 - (1 + x + x2/2 + xS/6 - Bx  4) exp ( - x ) ,  cp is the propagation velocity 
of the longitudinal waves, and ~ ( ~ ) ,  to, and B are the Haskell parameters that  characterize the source [5]. 

The product  ~)(oo)f(x) is called the reduced potential  [~(oo) is the stat ionary value of the reduced 
potential, and f ( x )  is the  source function]. 

The parameter  r  which has the dimension of volume, can be treated as the  volume introduced 
into the elastic med ium as a result of the explosion. It is proportional to the volume of the camouflet cavity 
and is related to its dimensions by the approximate relation [6] ~(cx~) ..~ rc3/3, where rc is the radius of the 
cavity. 

The parameter  to - -  the characteristic t ime of wave radiation - -  is close to the ratio r l /cp,  where rl is 
the radius of an elastic radiator that  is equivalent to the explosion, or the Sharpe radius [7]. In turn,  the value 
of rl is close to the radius of the rupture zone near the center of the explosion. According to the estimate 
of Rodionov [8], rl = (E/3a.) lDrc,  where E is Young's modulus and a .  is the compression strength of the 
medium. 

The dimension of the camouflet cavity can be calculated from empirical relations, for example, by 
the Heard formula [9]: re = 16.3 Q~176176176 0"11) m [re and z0 in meters,  Q in ktons, # (shear 
modulus) and E in megabars,  and p0 is the strength of the medium in grams per cubic centimeter]. 

The nondimensional  parameter  B is adjustable. It allows one to select the value of the reduced potential 
in accordance with the experiment.  In this case, 0 ~< B <~ 0.5. 

The source function f ( x )  satisfies the conditions f (0)  = f ' (0)  = f"(0)  = fro(0) = 0, which ensure 
the continuity of the potential ,  displacement, velocity, and acceleration at the wave edge. In addition, 
lim f ( x )  = 1. 
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Fig. 1 

In terms of the equations of the mechanics of continua, it suffices to require that  the potential and 
displacement be continuous at the wave edge. The continuity of the velocity and acceleration are extra 
constraints that follow from experimental data  on elastic waves generated by an underground explosion [5, 10]. 

Below, we shall use nondimensional variables and choose the characteristic t ime to as the time scale, 
and A0 = cp to as the length scale. We shall retain the previous notation for all variables. 

In the nondimensional variables, the source potential takes the form 

qo*(t, r, z) = - f ( t  - Pl)IPl, Pl = [ r2  "a t- ('7,0 -- Z)2] 1/2. (1.2) 

The displacements produced by the source (1.2) in an infinite medium are writ ten as 

Here 

u*( t , r , z )  = u~(t , r , z )r l  + u*~(t,r,z)zl. (1.3) 

Ur= Or P l t  Pl p~ ; U z = ~ =  P l t  Pl ' 

where zl = z0 -- z, and rl  and zl are the unit vectors of the coordinate axes. In this case, the dimensional 
displacements are 

r r 
(cpto) 2 u* and (cpto) 2 u~. 

2. The displacements in the half-space are written as the sum 

u*(t , r ,  z) + u( t , r , z ) ,  (2.1) 

where u(t,  r, z) are the displacements caused by the reflection of the wave generated by the source from the 
free surface. The integral representation of the displacement field u = urr l  + UzZl is obtained in [2]. It is of 
the form 

o 1 

- - 7  exp ( - k z o a ,  - kzl3, + k 3 t ( ) F ( k T (  ) d(] dk, (2.2) 
o l 

exp (-kz2al + kTtOV(kT() de] 
0 l 

] ( - k z o a l  - kz~l + k T t ( ) e ( k T ( ) d ( j  dk, e x p  

0 1 

where A = ~12- 4a l f l l ,  AI = ~2 + 4 a l f l l  ' A2 = 4~1, ~1 = 2 + ( 2 ,  a l  = r  + ~/2(2,/31 = ~ + (2, z2 = zo+ z, 
"7 = cs/cp,  R e a l  = Re/31 = 0 for ( > 0, l is the contour of integration in the formula of the inverse 
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Laplace transform [11], F ( T k ( )  is the Laplace transform of the function f( t) ,  and Jo(kv) and Jl(kr) are 
Bessel functions. 

In contrast to [2], in formulas (2.2), the transform of the source function F (Tk( )  is introduced explicitly 
and misprints are corrected. 

As the fundamental  solution we use the solution that corresponds to 

F(Tk()  = ( T k ~ )  - 2  - -  t ,  (2.3) 

where symbol -- denote the Laplace transform. 
The terms of the fundamental solution due to the longitudinal and transverse potentials of the 

displacement field are denoted by uP( t , r , z )  and u S ( t , r , z ) ,  respectively. Then, the general solution that 
corresponds to the source function f ( t)  is represented as the convolution of the fundamental solution with 
the second derivative of the function source: 

t - t p  t - t  S 

u(t ,r ,z )  = u* + f uP( t  - v ,r ,z ) f"(r)dT + f US(t -~ ' , r , z ) f" (T)dr .  (2.4) 
0 0 

Here u* = u*( t , r , z )  is the displacement field produced by the source (1.1) in an infinite elastic medium, 
tp = (r 2 + z2) 1/2 is the t ime of arrival of the reflected longitudinal wave at the observation point, and ts is a 
similar moment for the transverse wave. In this case, 

t~ = v, qo ~ + c~ + 1- ,,/(,- - c)~ + ~, 
7 

where C is a positive root of the equation (r - C)x/z 2 + C 2 - 7 0 r  - C) 2 + z 2 = 0. 
The approximate values of the parameter C obtained by the iterative method are of the form 

C ~ C ,  = r(l - e,,) (n = 0, 1, 2 , . . . ) ,  

r  2 l m 
,e:. = 3'(1 --~,,.-1) (1 --e,.,-l)2r 2 + z2"J , e'o =0 ,  el = 7z/d/-~+ z 2. 

3. An explicit expression for the fundamental solution can be obtained in the same manner as was 
done in [1, 2]. That  is, first one should deform the contour l in (2.2) so that  it embraces the cuts of the 
plane drawn from the branching points. The branching points are the zero of the radicals a l  and 31, and the 
cuts are drawn along the imaginary axis to infinity. Then, taking into account residues at the poles of the 

integrands for ( = 0 and ~" = :t:iO, where 0 is a root of the Rayleigh equation 2 - 02 = 4 ~1  - 3 ' 2 ~ 2 v ~  - 1~ 2 ,  

one should take Fourier-Bessel integrals of the real variable k. 
As a result we obtain the following expressions for the fundamental solution: 

v f  v~ + vfR + vs u~ = v~ + v~R + vp 
Z~  ~ 

ur = us + WR + us u~ = us + u ~  + us (3.~) 

In formulas (3.10), the terms with the subscript 0 are written as 

1-3"2 1 -  7 ~ + p2 p~ t2 --p3 t~( t - t p )' 

( z)z  
U ~ -  1 _ 7 2  -2-'~-(~:_[~g - 3  zo+-~ p-~2+ P~2 t 2 - - t ~ ( t - t s ) ,  p~ 

2z 2 _ r2 2z 2 (3.2) 23, 2 -- 3r 2 
u P -  1 --~2 (1_~~2~2 + p2 2 p4 t:5)z2 p3 tc(t - tp), 

' + , '  
U s -  1_3 ,5  23,2(1 _3,2) z2 -~ p2 + p4 t2 --pa tr - ts), 
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where ~(t) is the Heaviside function. They are obtained by finding the residue at the pole of the fourth order, 
which has the integrands in the contour integrals (2.2). These are low-frequency or quasi-static components 
of displacements. 

The terms with the subscript R describe the Rayleigh wave: 

U~t'R = 4ab---~2 S, (r, az2, 70t)e(t  - t ~,), 
703# 

u P R  - -  4a2b2 So( r ,  az2  , ~[Ot ) , (  t - t p ), 
7030 

2ab2d 
UfR= ~ S l ( r ' a z ~ 1 6 2  

u;~= 2~bd 
- 7 - ~  So(r, az( + bz, 70t)r - ts). 

(3.3) 

Here a = r  - 7202, b = ~ ,  d = 2 - 02; 0 = abd - (a 2 + 72b2), and 0 = 0(7 ) is a root of the Rayleigh 

equation d 2 - 4ab = 0 that is a function of the parameter 7- The functions of three arguments S1 and So are 
of the form 

qA - pB 
S l (r ,p ,q)  = dl(kr)  exp ( -kp)  s in(kq)dk = rR ' 

0 

oo B 
S o ( r , p , q ) -  f J0(kr) exp ( -kp )  s in(kq)dk = -~, 

0 

A = (  R+X)-  �9 B = ; R = (X2+ y2) l / 2 ;  X = r 2 + p 2  _ q2; y = 2pq. 

The terms with the subscript 1 (the high-frequency components of the displacement field) are expressed 

where 

by the following formulas: 

U~ P = e(t - tp) 1/f'r 1652fl Sl(r,  az2,Tt~) d~, 
7 ;  12( 54 + 16a2• 2) 

1 

s(t - ts) ~" 4 ~sar(,', z, 1) 
uf~- ~- 12(5, + 16~,~2) dl, 

1 

at(r, z, 1) ; [Sl(r, ~zo, 7tI +~z)+St(, ' ,  ~zo, 7tI--~z)152 --4~[C~(r, ~zo, 7tI + ~ z ) -  C~(r, ~zo, 7 t t -  ~z)l, 

16 a~52 S0(r, az2, 7t l )  d l ,  u p  _ - r  - tp) ~'r 16a2/32) 7 r  12 (54 + 
1 

u ~  - ,(t - ts) ~" 4 5as(,., z, 11 
7 7I" 12(5 4 + 16a2B2 ) dA, 

1 

Gs(r, z, ~) = 4afl[S0(r, azo, 7 t~+f lz )+So(r ,  otzo, 7t~ - ~ z ) ]  + 52[C0 (r, azo, 7t/~ +/3z) - Co(r, azo, 7t~ - flz)], 

1 (  P A R q B  ) Cl(r ,p ,q)  =- Jl(kr)  e x p ( - k p )  cos(kq)dk = - 1 - , 
r 

0 

(3.4) 

oo A 
Co(r,p,q) = f do(kr) exp ( - k p )  cos(kq)dk = -~. 

0 

= r  fl = X / ~ - - I ,  and 6 = 2 - A  2. The velocities and accelerations are given by the Here a 
derivatives of the displacements with respect to time: v = Ou/Ot and w = ~2U/Oqt2. 
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The formulas for the displacements of the free surface follow from (1.2) and (3.1)-(3.4) for z = 0. The 
fundamental solution in this case (it was obtained in [2]) is written as 

2rt 
%(t ,  ,.,o) = =(t - p) (1 - ~)p3 2ab2 l l/f78~_Sl(r, Azo,.yAt) dA] 

-I- ---~Sl(r, azo,qcOt) -- ~-~ I 

2 zot 
Uz(t, r, O) = r - p) (1 - 3 '2) p3 

where A = ~4 + 16c~2fl2. 

The general solution is expressed by the formulas 
t--o 

u.(t,,.,o) = f Ur(t-,-,,.,o)f'(,-)d,-, u.(t,,-,O)= 
0 

S0(r, azo,'rOt) - 1 1/j-r a b d  16 

700 ~-~ 1 A 
S0(r, Az0, 7At) dA], 

t-p 

/ U=(t - r, r, O) if(r) dr. 
0 

(3.5) 

(3.6) 

The quasi-static terms of displacements can be obtained in explicit form. Thus, substituting the first 
terms of formulas (3.5) into (3.6), we obtain 

'/' [%-, /  2r ( t - r ) f " ( r ) d r =  (1 _'~2) p -k , Uro = (1 - ,./2) p3 0 
(3.7) 

Uzo= (1--7-2)p2Z~ [ f t ( t /p)  q_f(t.~p)], p=(z2+z2o),/2. 

Similar formulas for the quasi-static terms of the displacement field can be obtained in the general case 
for z r 0. 

4. The vibration characteristics at internal points of the elastic half-space are given in Fig. 2, which 
shows the horizontal (a) and vertical (b) components of displacements, velocities, and accelerations (solid, 
dashed, and dotted curves, respectively) versus time at a point with coordinates r = 6.218 and z = 10.43 
for a source depth of z0 = 8.25. These coordinates correspond to one point of observation of the "Salmon" 
nuclear explosion performed in the United States in 1964. Data on this explosion test are given in [12-16]. 
The "Salmon" explosion with an energy field of 5.3 ktons = 2.2 �9 1013 J was carried out in a mass of stone 
salt at a depth of 827.8 m. 

The physicomechanical parameters of stone salt are as follows: density p0 = 2160 kg/m 3, velocity of 
longitudinal elastic waves cp = 4670 m/sec, and Poisson ratio v = 0.24. The dimensional coordinates of 
the observation point considered are as follows: tilted distance from the center of explosion p] = 659.6 m, 
horizontal distance r = 621.8 m, and vertical coordinate z = 1043 m. 

The Haskell potential parameters that we calculated from the oscillograms in [4] of ground displacement 
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in the "Salmon" test are as follows: 

(~(oo) = 3770 m a, to = 0.0214sec, B = 0.060. (4.1) 

They were chosen from the condition of better  fit of the calculated radial displacements to the 
experimental displacement curves in the initial portions of the oscillograms in [4] that  correspond to the 
region of the direct wave. 

The radial displacement was calculated from the formula 

up1 u e ( u r r l + u r z l ) ( ~ r l + Z - Z ~  ) ru t  (z-zo)u~ 
= �9 = �9 - - Z l  = + , 

Pl Pl Pl 
where e is the unit vector in the direction from the center of explosion to the point of observation. 

It can be seen from Fig. 2 that  the motion is represented as a sequence of three pulses that  correspond 
to the vibrations in the direct wave (from the moment of arrival to the moment tp), vibrations in the reflected 
longitudinal wave (from tp to ts) ,  and vibrations in the reflected transverse wave (after the moment ts). In 
this case, the motion in the longitudinal wave reflected from the free surface is reverse, and the motion in the 
reflected transverse wave is similar to the motion in the direct wave. The fourth pulse, due to the Rayleigh 
wave at the point considered, has a small amplitude and cannot be seen against the background of the general 
motion. 

Figure 3 shows oscillograms of the radial displacement at the same point as in Fig. 2. The solid curve 
refers to the experiment,  and the dashed curve refers to the calculation. As can be seen from Fig. 3, the shape 
of the displacement curve in the  direct wave (from the moment  of arrival to the moment  t = tp) practically 
coincides with the shape of the reduced potential, i.e., the source function f(t). This might be expected, 
because, in this case, the distance pl = 6.6 is relatively large, and, in formula (1.3), the second term, which 
is proportional to the value of the source function, dominates. 

Further, in the t ime interval from 0.38 to 0.52 sec, a pulse appears which is apparently due to the 
longitudinal wave reflected from the free surface. Its location correlates with the position of the reflected wave 
in the calculated curve. But the shapes of the calculated and experimental pulses are different. 

In the calculation, the reflected pulse has three phases: the motion to the center of explosion, which 
begins after the arrival of the longitudinal wave at the moment  t = tp  (first phase), the state of rest after the 
maximal displacement to the center of explosion up to the moment  t = ts  - -  the onset of the transverse wave 
(second phase), and the motion from the center of explosion at t > ts (third phase). 

In the experiments, the reflected pulse consists of two phases: the first and the third, which form a 
single dome-shaped pulse. The second phase is not observed. 

Increasing the calculated velocity of transverse waves cs, one can find a value of the velocity such that 
the reflected pulse becomes similar to the experimental pulse. This is the case for cs = 3240 m/sec,  which 
corresponds to v ~ 0.038 (7 = 0.695). The calculated displacement for v = 0.24 (7 = 0.595) is shown in Fig. 
3 by the dashed curve, and the displacement for v = 0.038 (7 = 0.695) is shown by the dotted curve . Thus, 
the best agreement between the calculation and the experiment is achieved for the Poisson ratio much smaller 
than 0.24 (this value is obtained by laboratory measurements). 
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A similar result - -  the best agreement between the calculation and the experiment for v ,.~ 0.03-0.04 - -  
takes place for all the oscillograms in [4] in which the pulse that corresponds to the wave reflected from the free 
surface can be identified. These oscillograms were obtained at distances of 318.2, 321.0, 401.7, and 659.6 m 
from the center of explosion. In the other oscillograms given in [4], the wave pulses reflected from the free 
surface are concealed by the noise due to the inhomogeneity of the medium. 

The small value of the Poisson ratio indicates that  the stretching or shortening of the element of the 
medium proceeds without considerable shortening of its transverse dimensions. Thus, it can be seen that  stone 
salt in the seismic waves generated by the "Salmon" explosion was deformed as a porous medium. According 
to the data of [14], the volume porosity of stone salt determined before the explosion was 3.14%. 

One more difference between the calculation and the experiment should be noted in Fig. 3. For the 
velocity of the transverse waves used in the calculations, cp = 4670 m/see [4], the reflected longitudinal wave 
appears 0.05 sec later than in the experiment (in the calculation, tp = 0.43 sec, and, in the experiment, 
t~, = 0.385 see). Coincidence of the times of arrival of the reflected waves occurs when the calculated velocity 
of longitudinal waves cp = 5110 m/see. For stone salt with the physical characteristics given in [14], the 
longitudinal waves cannot have such a high velocity. It is possible that,  in the experiment,  the wave that was 
recorded was reflected from the lower boundary of the loose sediment layer and not from the Earth's surface. 
The thickness of this layer is about 70 m (Fig. 1 in [14]). 

Figure 4 gives calculated results for the displacements, velocities, and accelerations at distances r = 0, 
2, 10, and 30 from the zero point at a depth of the source z0 = 1 (the solid curves refer to the displacements, 
the dashed curves refer to the velocity, the dotted curves refer to accelerations, and the letter R denotes 
vibrations in the Rayleigh wave). These oscillograms give an insight into the character of motion of the free 
surface of the half-space for the source parameters (4.1). The results of calculation of the motion of the free 
surface obtained by formulas (3.5) and (3.6) agree with the results calculated from the formulas of [3], where 
a different representation of the fundamental solution is used. 

5. The Haskell source (1.1) is remarkable for the fact that it models not only the elastic wave generated 
by an underground explosion, but also the residual displacements and stresses that  occur in the ground. 

The displacements produced by the source in an infinite elastic medium are of the form 

O R  ~ + c e t o  , (5.1) 
where x = (t  - R / c p ) / t o ,  and R is the distance from the center of the explosion. In (5.1) and below we use 
dimensional variables. 

Passing to the limit t --* co in (5.1) and taking into account that  f (co)  = 1 and f ' (~)  = 0, for residual 
displacements we have [5] 

u ~  = lim u . ( R , t )  = (I)(cr 2. (5.2) 
t--.-*oo 

For the residual stresses we obtain the formulas 
0" 7 = 4,y2pc2 @(co) oo R3 ' 0"7 = %  = 2 2pc   (oo)n3 (5.3) 

The physical cause of the occurrence of static fields of the form of (5.2) and (5.3) is the formation of 
a camouflet cavity surrounded by zones of fragmentation and radial cracks at the center of explosion [8]. The 
cavity and rupture zones that  arise prevent the unloading of the state (5.3). The rupture zone around the 
cavity is a spherical shell, which has a load-carrying capacity. The carrying capacity of this zone is sufficient 
to preserve residual displacements and stresses for some time, which is much larger than the characteristic 
time to. 

The parameter  ~(oo) can be determined directly from the oscillogram of displacement of any point of 
the medium in the region of the direct wave. From formula (5.2) we can find the residual displacement ttT 
and then calculate the volume displaced into the elastic zone: 

Voo = 4 ~ r R 2 u ~ ( n )  = 4 7 rR2(~(oo ) /R  2 = 4 zr(I)(co). (5.4) 

If, before the explosion, the medium did not have porosity, the volume Voo is the sum of the volume of 
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the cavity and the volume of the voids produced in the ground by the explosion: 
4 3 

voo = + v, = + v,. ( 5 . 5 )  

Here Vr and rc are the volume and radius of the cavity, and V, is the volume of the voids. 
From (5.4) and (5.5) we obtain the following expression for the volume of the  voids: 

4 (5.6) V. -- 4 rr - 

For the "Salmon" explosion, @(oo) -- 3770 m 3 [see (4.1)], and the radius of the cavity rc -- 16.7 m 
[16]. It follows from (5.4) and (5.6) that  the displaced volume is Vor = 47,400 m 3, the volume of the cavity 
Vr = 19,400 m 3, and the volume of the voids V, = 28,000 m 3. 

Radial cracks, according to the data  of [16], were observed at distances of 90 to 120 m from the center of 
explosion. Then, assuming the radius of the rupture zone to be equal to the half-sum of these values (rr -- 105 
m), we obtain an est imate for the porosity of the stone salt in the "Salmon" explosion: 

I7, Voo - Vc 4 ~re(oo) - (4/3)7rrc 3 
q ----- ~ = - -  -- ~ 0.58 �9 10 -2  ~ 0.6%. 

Vr - Vc Vr - Vc (4/3) ~r(rr a - rr a) 

As can be seen, even insignificant loosening of the ground in the explosion leads to the fact that most 
of the displaced volume is formed by rupture zones rather than by the cavity. 

In connection with the above estimates, we should note the following. In [16], the dimension of the 
cavity formed in the "Salmon" explosion, r = 16.7 m, was obtained by measuring the cavity 45 months after 
the explosion. In the estimation in this section, we use, strictly speaking, the radius of the cavity that occurs 
"just after the explosion." During the several months that  passed after the explosion, the stress state (5.3) 
could have been partially unloaded, and, as a result, the volume of the initial cavity could have decreased. 

6. In the case of the half-space bounded by the free surface, the residual displacements can also be 
obtained from formulas (2.4), (3.1)-(3.4) by passage to the limit t ~ oo. With this passage, only the terms 
obtained from the quasi-static terms of the displacement field (3.2) become different from zero. The Rayleigh 
(3.3) and high-frequency terms (3.4) in this case tend to zero and do not make a contribution to the residual 
displacement field. Let us prove this statement.  

The residual displacements that  occur in the elastic medium under the action of the source (1.1) are 
due to the fact that ,  with time, the reduced displacement potential tends not to zero but to a constant value 
[in this case, the source function f ( t )  --+ 11. Thus, the continuous source functions f ( t )  [t E [0, oo)] that  satisfy 
the conditions f(0)  = 0 and f (c~)  = 1 lead to residual displacements. 

As a source function in (1.1) we use one of the simplest functions of the above-mentioned class: 

[r - r - trise)]t, 0 ~< t ~< trise, 

f(t) = ~(t - trise), t >> trise. 

Here trise is the rise t ime to the stationary value. If trise is used as the time scale, the function f ( t )  takes the 
form 

{ [r - r  1)]t, 0 <~ t <~ 1, 

f ( t )  = r - 1), t >> 1, 

and its second derivative is f " ( t )  = ~(t) - ~(t - 1), where ~(t) is the Dirac function. 
Substitution of f " ( t )  into formulas (3.6) gives displacements in the form of the difference of two 

fundamental solutions. For example, for the vertical displacement component in the Rayleigh wave, we obtain 

abd 
uzR( r ,O , t )  = " ~  {So(r ,  azo ,7Ot)  - So[r, azo, 7 0 ( t -  1)1}, (6.1) 

where S0(r, azo ,7Ot)  = B / R ,  B = ( ( R - X ) / 2 )  1/2, R = (X2 JrY2) 1/2, X = r2q-a2z2-72•2t2  , and Y = 2azovOt.  
Fixing the values of r and z0 and passing to the limit t ---+ co, we have 

R --~ 72t92t 2, R - X ---+ 272v~2t 2, lim So(r,  azo,'7Ot) = 1/7~9t. (6.2) 
t---*C~ 
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It follows from (6.1) and (6.2) that ,  as t --* cx~, the displacement u=n tends to zero not more slowly than t -~. 
The proof for the horizontal displacement component  in the Rayleigh wave and for the high-frequency 

displacement components  (3.4) is derived in a similar manner.  
As a result, we obtain the  following values of the residual displacements in the half-space z /> 0: 

u~(r,z)= p~ P23 1 1 _ 7 2  1 - 3 ( 1 - 7 2 )  p22 p4 , 
(6.3) 

z~ z2 {1 2 (2z2-r2)z 3 7 2 ( t ~ _  @ ) 2z22 - 3r 2 
--~,2 [ ")'2 + ( 1 - ' ) ' 2 )  p2z2 p4 1} 

As can be seen from (6.3), the  displacement of the ground proceeds toward the free surface (this is 
shown by the minus sign in the  formula for the vertical displacement component) .  As a result, the initial 
horizontal free surface of the half space becomes dome-shaped after the explosion - -  a buckling hill forms. 

The residual displacements of the free surface can be obtained from (6.3) for z = 0 or from (3.7) for 
t ---* ~ .  In dimensional variables, these displacements are 

2 r u ~  = - r 1 6 2 1 6 2  2 z0 
ttr ~176 ---- (I)(OO) 1 -- 7 2 p3'  ] -- ,.}t-'-'"~ p3 '  p = (r2 -~- Z2)1/2" (6.4) 

We denote the abscissa and ordinate of points on the profile of the displaced free surface by x and y. 
Then, the parametr ic  equation for the  profile of the elastic buckling hill can be writ ten as 

r z0 2 
x = r + A ~ - ~ ,  y=-A--p3, A-- 1-72(I)(cr (6.5) 

where the initial coordinate r of the  point on the surface z = 0 acts as a parameter.  
The surface of the  hill is the  surface of revolution of curve (6.5) around the  y axis. Hence it follows 

that  the volume of the  hill can be found from the formulas 

vh = = / x (r) dy = = f (1  + dr = f (1  + 2a/p +   /p6) 3p-sd  
0 0 0 

(6.6) 

We show that  the inequality AZo 3 << 1 holds. Indeed, the smallest depth  of explosion is about  50 m / k t o n  1/3. 
Otherwise, ejection of ground with the  formation of a crater is inevitable [8]. The earth 's  soils are characterized 
by the value of ~(oo)  .~ 10 a ma /k ton ,  and the largest value of the parameter  is 72 = 0.5. 

Hence, we obtain 
A 2 ~(oo) 10 a ma /k ton  
z g -  1 - 7 2  zg ~<4125 .10  a m 3 / k t o n = 0 " 0 3 "  

With an error less than a fraction of a percent, from (6.6) we have an approximate  expression for the 
volume of the elastic buckling hill: 

Vh = 21rA = 4~r~(oo)/(1 - 72). (6.7) 

As can be seen from formula (6.7), the volume of the elastic buckling hill is a factor of (1 - 72) -1 larger 
than the volume displaced from the center of explosion. Hence it follows that  the ground in the region of the 
hill for 7 ~ 0 (7 = 0 corresponds to the liquid) is in the state of extension. The volume of the elastic buckling 
hill (6.7) is proport ional  to the  explosion energy and is large for large-scale explosions. 

If the elastic buckling hill is considered as an engineering building, its disadvantage is the small height. 
Indeed, the minimal depth  of an explosion at which the explosion can be considered camouflet must  be smaller 
than the elastic radius of the  explosion, i.e., z0 >/r ] .  For typical rocks, rl ~ 100 m / k t o n  1/3 [5]. For example, 
for stone salt, r 1 = 95 m / k t o n  1/a [4]. 
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From the second of Eqs. (6.4) we obtain the inequality 

I 2 ~0~)  I ~ 4 103m3/kt~ 0.4 ,'3, ym = maxluTI = m a x  1 - 7  5 = m/kton . 
(100 m/ktonl/3) 2 

Since the height of the hill increases in proportion to the cubic root of the explosion energy, one might 
have expected to obtain an arbitrarily high hill at sufficiently large explosion energy. However, the factor that 
restricts the height of the hill is the gravity force. 

With increase in the explosion energy, the dimension of the camouflet cavity increases and the stability 
of the vault of the cavity decreases. For certain dimensions of the cavity, the ground caves in and caving 
gradually propagates to the free surface. As a result, a crater occurs in the vicinity of the top of the buckling 
hill. The edges of the crater are formed by the peripheral parts of the buckling hill, which have insignificant 
height. 

The formation mechanism of the buckling hill presented in this paper predominates for large depth of 
explosion at which the ground at the zero point is elastically deformed. 

For comparatively small depths of explosion, which are used in blasting to loosen ground, the 
predominant mechanism of formation of a buckling hill is different. In th[s case, most of the hill is formed by 
the loosening of the ground due to rupture, dispersion, and the return fall into the crater. 
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